

SOaRS 2025 April 25, 2025

MicroLink Devices, Inc. 6457 W. Howard Street Niles, IL 60714 USA

Phone: +1 847 588 3001 Fax: +1 847 588 3002

Advancements in Solar Arrays

Dr. Noren Pan CEO MicroLink Devices

Outline

- □ Textured Solar Arrays → Zephyr Platform
- □ Laser Power Converters \rightarrow BAE PHASA-8
- □ Space Solar Cells \rightarrow Airbus Sparkwing \rightarrow Maxar Bus \rightarrow SDA

SPACE DEVELOPMENT AG

Epitaxial Lift-off (ELO) Process Technology

- ELO uses highly selective wet chemical etching to dissolve a release layer and "peel" III-V epi-layers from their original growth substrate
- □ Lifted-off semiconductor material supported by metal layer
- GaAs substrate reused for cost reduction

evices, Inc.

Textured Top Sheet

Rooftop Textured Array Demonstration

Textured arrays delivered up to 10% more power during early morning hours

Textured Top Sheet

Airbus Zephyr

Prism Quality

SOaRS 2025

Laminated Performance

- □ Slight expected drop in J_{SC}
- No significant changes in efficiency
- Pending angular performance measurements

Laser Power Beaming Technology

- □ Wireless and long-range power transmission using laser light
- □ The market is predicted to have CAGR of 20% for the next 5years into a tens of billions dollars market.
- Potential applications:
 - Autonomous vehicles
 - Space power supply
 - Telecommunications
 - Disaster relief
 - Power grid transmission
 - Commercial satellites

The megawatt market size for laser power converter (LPC) applications is expected to be equivalent to hundreds of millions of dollars by 2030, with one laser source and multiple LPC receiver systems.

MLD Laser Power Converter

- Lattice matched (1.11 eV) AlGaInAs
- 1 junction cell shows 50±2% efficiency with improvements to 60% expected soon
- Higher number of junctions in cells reduce sensitivity to varying laser intensities and improved I²R losses
- Multijunction cell development: Phase I funded project for each new version of MJ cell design

	Power Density (W/cm²)	V _{oc} (V)	J _{SC} (mA/cm²)	Fill Factor (%)	Efficiency (%)
1-Junction	1	0.86	715	80.07	49.04
	0.5	0.84	358	82.58	49.60
2-Junctions	1	1.64	340	77.97	43.52
	0.5	1.60	171	78.41	42.86

Roadmap of LPC Cell Development

- □ LPC Cell Development Path:
 - Multi-junction 2J, 3J, and 4J cell development ongoing.
 - Tunnel diodes with reduced parasitic absorption.
 - Ultimately want to maximize the practical number of junctions
- Develop Module:
 - Cell layout for optimized module manufacturing that minimizes packing losses and maximizes power conversion.
 - Grid metal designs that reduce shading and resistance losses.
 - Thermal mitigation strategies to spread the heat of the module.
- Develop better backside reflectance for enhanced cell performance:
 - Use a dielectric for enhanced back-side reflectance.

PWSA JOINT FORCE INTEGRATION

MicroLink Devices, Inc.

MTJ-1 Space Cell Preliminary Performance

MTJ-1 Space Cell Design

- Quartex cell geometry
- Epitaxial layer structure optimized for low fluence (1e14 cm⁻² electron)
- □ Back metal design for space
- □ applications (thermal stability)
- □ Industry-leading low mass (24 mg/cm²) 3x below Ge

BOL Bare Solar Cell Performance

Parameters	Value @ +25°C
Cell Area (Quartex Cell)	37 cm ²
AM0 Efficiency BOL (%)	29.8
V _{oc} (V)	3.05
I _{sc} (mA)	600
V _{mp} (V)	2.65
I _{mp} (mA)	570
Max Power BOL (W)	1.506

EOL Remaining Factors (electron exposure)

		Post 1MeV Exposure Retention				
Energy (MeV)	Fluence (cm-2)	Voc	lsc	Vmp	Imp	Pmp
1	1.00E+14	0.955	0.951	0.968	0.949	0.918
1	5.00E+14	0.92	0.84	0.928	0.834	0.772

Temperature Coefficients

Energy (MeV)	Fluence	Voc (mV/°C)	Jsc (uA/cm2/°C)	Vmp (mV/°C)	Jmp (uA/cm2/°C)	Eff (%/°C)
	BoL	-6.08	11.68	-6.38	7.91	-0.0562
1	1.00E+14	-7.06	9.66	-7.42	7.4	-0.0658
1	5.00E+14	-7.03	14.36	-7.1	11.05	-0.0479

Solar Power Module (SPM) – Design

Microlink SPM

Equipment (unit)	Supplier	Cat.	Heritage	QM	Qualification Status	Remark
TJ InGaP/GaAs/InGa As solar cell	Microlink Devices	А	- Hale aircraft (Zephyr)	Х	Open	Qualification planned in accordance to AIAA-S111/112, see development schedule
Solar Power Module	Microlink Devices	А	none	Х	Open	Qualification planned in accordance to AIAA-S111/112, see development schedule
Bonded SPM on substrate	AirbusNL	А	none	Х	Open	Various breadboard tests performed including >3,000 thermal cycles

Solar cell / Solar power module

- Qualification ongoing in accordance to AIAA-S111/112
- Including 20,000 thermal cycles on Sparkwing panel substrate

SPM bonding & welding on Sparkwing substrate

- EM coupon test in October 2024
- 10x TVAC + 1,000 ambient pressure thermal cycles
- Life thermal cycling on DVT coupon as part of the contract

Test conditions, results and references will be presented at EQSR.

Technology Derisking Prior to S-111A Qualification

Technology area	Pre-qual test/derisking
Cell design	 IE14/cm² 1MeV e⁻ Grid metal tape test Damp heat exposure (45°C, 95% RH) Thermal runaway evaluation
Interconnect (Ag-Kovar w/racetrack strain relief)	 FEA analysis 2,000,000 cycle mechanical fatigue test 7000 thermal cycles (-120 - +120°C) Weld pull force
Encapsulation (Prismatic silicone with UVR coating)	 2000 ESH vacuum UV 7-year LEO ATOX 1E15/cm² 1MeV e⁻ 800km low-energy p+ Combined effects (proton/thermal cycle) Extended vacuum UV (10,000 ESH, Q2 2025)
Bypass diodes (Si Schottky)	 Life test Weld pull force

S-111A Qualification Gantt

- Qual started Q3/2024
- Radiation testing complete
- Initial thermal cycling to complete end Q3/2025
- AIAA S-111A qual to complete Q2/2026

* The S-111A Solar Cell Integration Test concludes at 20,000 cycles. Continued cycling is to satisfy mission-specific requirements.

Technology Derisking

Mechanical fatigue testing of planar interconnects

- "Racetrack" planar
 Ag-Kovar
 interconnect design
- Piezoelectric mechanical fatigue tester used to cycle interconnects over 2M cycles (100micron displacement for LEO thermal range).

MicroLink - Airbus/Sparkwing Demonstration Coupon

- MicroLink has had a multi-year joint development with Airbus Leiden to integrate MicroLink SPMs into Airbus Sparkwing arrays.
- Currently proposing Sparkwing/MLD arrays for SDA Tranche 3 constellation array (>66kW)
 - Need APFIT or other support for highvolume space scale-up
- Coupons were fabricated using MicroLink SPMs with multiple module-to-module interconnects
- Qualification testing:
 - 10x TVAC (+144/-142C)
 - 1000x APTC (+112/-108C)
 - 20k APTC (+100/-100C)

Sparkwina

MicroLink - Airbus/Sparkwing Demonstration Coupon

- >20,000 thermal cycles complete
- No changes in I-V or EL after thermal cycling
- Small cracks in cells did not degrade
- Key TRL 6 status achieved, high technology credibility for SDA proposal

Summary

- Flexible solar sheets for HAPS aircraft with very high efficiency (>30% AM0) and high specific power (>1500W/kg).
- Textured encapsulations are an important technology to extend light collection in high latitude applications and reduce battery requirements.
- Laser Power Converters provides an additional power source to UAV and HAPS
- □ ELO Solar Models are being qualified for Space Satellites

PM – Eric Follstad (CENTCOM) and Alec Jackson (AFRL)

