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Motivation - Determine the (Un)influential parameters of a Hydrological Model
Application

Conceptual
Hydrological Model Larsim

Key pillars of our work

• Challenging (Real-world) application
• UQ Algorithms
• Unifying (Parallel) Software Solution

Bridging the gap between the
theoretical work on UQ and more

complex real-world problems

Challenges
• Complex, computationally expensive model
• Quantity of interest is a time signal
• Many different ’modes’ of the systemś behavior
• Physical dependency between parameters
• Other sources of uncertainty (e.g. forcing data)

Benefit

• Investigating dimensionality reduction
strategies using Sobolíndices
(e.g., speed up the following calibration process)

• Selecting an appropriate model structure for a
given application

Uncertainty propagation
Stochastic input is composed of independent random variables

ρ(θ) =
d∏
i=1

ρi(θi), θ = (θi)
d
i=1

We draw samples from ρ(θ) and solve the complex forward model
f (x, t,θ), for each input sample.

Zero step - mapping of the range Γ to some standard convenient
range (e.g., [0, 1]d or [−1, 1]d) - transformation θ = T (u).

An observation operator, O, is employed to determine the output
of interest.

Ensemble of simulations are used to assess quantities:

E[O] =
∫
Γ
O(f (x, t,θ))ρ(θ)dθ; V ar[O] = E[O2]− (E[O])2

Variance based (Sobol’) sensitivity indices1

STi =
V ar(f )− V ar(E(f |θ−i))

V ar(f )
=
E(V ar(f |θ−i))

V ar(f )

Monte Carlo methods for UQ and SA

• MC and Quasi-MC sampling approaches2

• Sobol’ indices approximated based on the ensemble of simu-
lations1

Polynomial Projection3

f (x, t,θ) ≈ UNp = fN (x, t,θ) =
N−1∑
p=0

mp(x, t)Φp(θ)

Where Φn(θ) are orthonormal multivariate polynomials
Coefficients:

mp(x, t) = E[f (x, t,θ)Φp(θ)] =

∫
Γ
f (x, t,θ)Φp(θ)ρ(θ)dθ

Pseudospectral approximation - {mp}N−1p=0 evaluated via tensor
product (Gaussian-Legendre) quadrature rule;4 1D quadrature rule

Unq =

n∑
q=0

f ((θi)q)φp((θi)q)ωq, n = floor[
DE

2
]

Expectation:
E[fN (x,θ)] = m0(x, t)

Variance:

V ar[fN (x, t,θ)] =

N−1∑
p=1

m2
p(x, t)

Sobol’ indices5 for sensitivity analysis:

STi =

∑
p∈Aim

2
p(x, t)

V ar[fN (x, t,θ)]
, i = 1, . . . , d

Spatially Adaptive Sparse Grid6

• SG Interpolation of f (x, t,θ)

f (x, t,θ) ≈ USGI = fSGI(x, t,θ) =
∑
l∈,i∈I

αl,i(x, t)ϕl,i(θ)

Where αl,i(x, t) are hierarchical surpluses, and ϕlj,ij(θ) =

ϕl,i(θ) =
∏d
j ϕlj,ij(θj) are d-variate hierarchical basis functions con-

structed as a tensor product of 1D hierarchical basis functions

Compute the PC coefficients in two ways:
• SG interpolation followed by pseudo-spectral projection7

mn(x) =

∫
Γ
fI(x,θ)Φn(θ)ρ(θ)dθ

=
∑
l,i

αl,i(x)
∏
j

∫
[0,1]

Φj(T (θj))ϕlj,ij(θj)dT (θj)

• Approximate all the weighted integrals of f via some standard inter-
polatory quadrature schemes (e.g., SG Gauss-Legendre)

Combination Technique approach
linearly combine full lower-order anisotropic grids Dimension-wise

Spatial Refinement with SG refinement strategy
with a maximum surplus refinement8

Software solutions & Results
• Software Tools:

– Pandas Library - Time series data
representation

– ChaosPy
– UQEF9 - UQ parallel execution

framework
– SparseSpACE10 -

the sparse grid spatially adaptive
combination environment

• Hardware - Leibniz Supercomputing
Centre (LRZ) CooLMUC-2 Cluster

• Necessity for the parallelization
– parallel execution of model runs

(with all methods)
– parallel time-wise post processing

• Dash panel - visualization and control tool for analyzing the input, state, and output time
series, setting the parameter options for the forward UQ run, etc.

Case 1.

Case 2.
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