

Michael Davidson MSE MPH CPO PhD-candidate^{1,2}, Robert Dudley, PhD-candidate², Noha Daher DrPH MSPH², Thomas Fryer DBA³, Johannes Schaepper PhD CPO², Duc Tran MD PhD⁴ Contact: Michael Davidson <u>mdavidson@llu.edu</u> 1 - Loma Linda University Medical Center, 2 - Loma Linda University School of Allied Health Professions, 3 - University California Riverside, Bourns College of Engineering, 4 - Loma Linda University School of Medicine

Introduction

The Loma Linda University Health Robotic Prosthetic Leg (LLUH-RPL) and Articulated Prosthetic Ankle (APxA) were designed and prototyped to provide persons with amputation, regardless of ambulation cadence, the ability to walk on level and sloped ground. These devices have been tested on a non-disabled male subject [1] and found to be feasible for testing on subjects with amputation.

Purpose

The purpose of this graduate student research study was to test the feasibility and safety of the LLUH-RPL and APxA, by evaluating the performance of these devices on level-ground on two subjects with amputation of the right leg.

FIGURE 1. Initial design of LLU-Ankle and LLUH-RPL on persons with BKA and AKA

Methods

We recruited two subjects, one male, 183cm (6'0") tall, with below-the-knee amputation (BKA) and one female, 162cm (5'4") tall with above-knee amputation (AKA). Both subjects had the ability to walk with a variable cadence and on uneven terrain (functional level K3). The subjects gave written informed consent. This research protocol was approved by Loma Linda University Office of Sponsored Research Institutional Review Board.

Feasibility Testing a Robotic Prosthetic Leg and an Articulated **Prosthetic Ankle Joint**

FIGURE 2 - LLU-APxA on a person with BKA (left) the LLUH-RPL with APxA on a person with AKA

Protocol: Subjects performed the 10-meter walk test (10MWT), and the 6minute walk test (6MWT) while wearing the LLUH-RPL. Equipment: 1) LLUH-RPL (AKA only) 2) APxA with Passive Hydropneumatic Assists (BKA and AKA) 3) Mobile Phone 4) Heart Rate Monitor 5) inertial measurement units (IMUs) 6) 24-camera Motion Capture System 7) In-floor force-plates

Both the APxA and LLUH-RPL+APxA were tested in parallel bars; then tested in an open indoor environment under various cadences and velocities. Then the LLUH-RPL was tested in a motion capture lab to assess kinetics and kinematics.

FIGURE 3 - LLU-APxA on a person with BKA while walking with improved gait symmetry.

FIGURE 4 - LLU-APxA on a person with BKA while standing then sitting, demonstrates improved ankle motion

FIGURE 5 – From left to right Initial Contact, Loading Response, Midswing, Terminal Swing shows improved motions knee and ankle of the LLUH-RPL+APxA still provides stance stability

FIGURE 6 – From left to right Preswing, Initial Swing, Midswing, Terminal Swing shows that knee and ankle motion of the LLUH-RPL+APxA positions the foot to safely clear the floor

Intervention Mass and height of de Height of subject Walking velocity **Distance traveled (est** Falls, stumble events,

The LLU-APxA and LLUH-RPL was demonstrated to be safe and feasible in ambulation tasks on a male with BKA and a female with AKA, while walking on level ground indoors. These results demonstrate these prosthetic devices were safe in a controlled that environment and are feasible for further testing on ramps, in sit-to-stand, stand-to-sit conditions, and in walking tasks outdoors.

Michael Davidson is the inventor of the claimed technology in this study. Loma Linda University Health owns the rights to this patent. This study was funded by Loma Linda University Health.

[1] Davidson, M, Daher, N, Fryer, T, Schaepper, J, & Tran, D. "Design, Prototyping, and Testing of a Robotic Prosthetic Leg Preliminary Results." Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition. Volume 5: Biomedical and Biotechnology. Virtual, Online. November 1–5, 2021. V005T05A062. ASME. https://doi.org/10.1115/IMECE2021-68786

LOMA LINDA **UNIVERSITY**

School of Allied Health Professions

Results		
	Subject 1 (APxA)	Subject 2 (RPL + APxA)
	APxA	LLUH-RPL + APxA
levice	2.91 kg, 26.5cm	4.11 kg, 43cm
	183 cm	162cm
	1.34 m/s	0.77 m/s
imated)	2 km	2 km
toe drags	0,0,0	0,5,1

Conclusion

Disclosure

References