Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation reduces Painful Diabetic Neuropathy and Upregulates Neuroprotective Cellular Pathways in Latinos with Type 2 Diabetes

<u>Alfonso M Durán¹, Lorena M Salto¹, Justin Câmara¹, Ivette Paquien¹, W Lawrence Beeson^{1,2}, Anthony Firek³, Zaida Cordero-MacIntyre^{1,2}, Marino De León¹</u> ³Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System Medical Center, Moreno Valley, CA, USA

¹Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda, CA, USA; ²Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ²Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ²Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ²Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ²Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lifestyle and Ca, CA, USA; ⁴Center for Nutrition, Healthy Lif

Introduction

Omega-3 polyunsaturated fatty acids (PUFAs) are increasingly reported to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. Specifically, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. In addition, recent reports in animal models link PUFA supplementation to improving painful diabetic neuropathy (pDN). However, the molecular mechanism behind omega-3 PUFAs ameliorating pDN symptoms is lacking with concordant human pain evaluation for pDN symptoms. Therefore, we sought to determine if dietary omega-3 supplementation improved pDN symptoms and define the distinct cellular pathways impacted by our dietary supplementation in patients with type 2 diabetes mellitus.

Scheme 1. Study Description. DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; T2DM, type 2 diabetes mellitus; SF-MPQ, Short-form McGill Pain Questionnaire

Characteristics of all En Balance-Plus study participants pre and post **DHA-rich dietary intervention (n=35)**

Clinical Parameter	Baseline	3 Months	Difference 3Mo-BL	Significance, P
Age (y)	55.5 ± 11.8	_	_	-
Male %, Female %	43%, 57%	-	-	-
% Hispanic	100	_	_	-
BMI, kg/m ²	29.7 ± 5.5	29.8 ± 5.7	0.1	0.706
Cholesterol, mg/dL	176.3 ± 35.7	179.0 ± 34.3	2.7	0.294
LDL, mg/dL	117.1 ± 32.5	111.6 ± 27.9	-5.5	0.083
HDL, mg/dL	47.2 ± 13	48.2 ± 14	1	0.600
Cholesterol:HDL	3.9 ± 1.0	3.9 ± 1.1	0.0	0.561
Triglycerides, mg/dL	169.3 ± 83.9	163.7 ± 123.0	-5.6	0.347
Fasting Glucose, mg/dL	154.1 ± 71.9	142.7 ± 65.5	-11.4	0.095
HbA1c %	7.6 ± 2.3	7.4 ± 2.1	0.2	0.014
able 1. Percentage of individuals or mean \pm SD shown for each variable and each time point (Baseline vs 3-months). Normally				

distributed (other distributions were non-normally distributed). P-values based on match pairs t-test for BMI and Mann-Whitney U test for LDL, HDL, cholesterol:HDL, triglycerides, HbA₁, and fasting glucose.

Total of 124 Biochemicals significantly change from baseline after 3-months of DHA-rich dietary supplementation

Total Biochemicals Identified	695
Matched Paired t-Test	<u>3Mo</u> BL
Total Biochemicals p ≤ 0.05	124
Biochemicals ($\uparrow \downarrow$)	75 49

Table 2. Metabolomic compound identification and statistical comparison, matched pairs *t*-test

En Balance-Plus participants reported dietary and GC-MS relative omega-3 PUFAs plasma levels at baseline and 3 months (n = 40) Baseline (BL) 3 Months (3Mo) Difference Significance, P **3Mo-BL**

			00 21
GC-MS			
DHA	.71 ± .4	1.85 ± 1.1	1.14
EPA	$1.03 \pm .68$	1.62 ± 1.1	0.59
Dietary Intake			
DHA mg	57.6 ± 98.9	1035.2 ± 30.1	977.6
EPA mg	26.8 ± 65.5	211.7 ± 11.3	184.9
Fable 3. Percentage of individuals or mean \pm SD shown for each variable and each time point (Bas based on match pairs <i>t</i> -test.			

Metabolite	Correlation	p-value
cysteine-glutathione disulfide	-0.460	<0.001
linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [1]	-0.266	0.059
Sphingosine	0.489	<0.001
3-phosphoglycerate	0.572	<0.001
Glycerol 3-phosphate	-0.163	0.252
1-linoleoyl-GPA (18:2)	0.406	0.003
2´-deoxyuridine	-0.492	<0.001
Maltose	0.360	0 009

Table 4. Partial spearman correlation between SF-MPQ sensory score and top metabolites contributing to group separation per RF, adjusted for ID. Figure 3. Paired t-test comparison of baseline relative plasma concentration of sphingosine metabolite. Mean \pm SD shown. *** p \leq 0.001

< 0.001	
0.001	

0.0001 0.0001 seline vs 3-months). *P*-values

Bio Function Categories	Diseases or Functions Annotation	<i>P-</i> Value	Activation Z- Score	Number of Biochemicals
	Synthesis of reactive oxygen species	7.21 E-07	-1.69	13
Free Radical Scavenging	Formation of reactive oxygen species	4.19E-04	-1.96	4
	Biosynthesis of hydrogen peroxide	4.95E-05	-1.95	5
lar Compromise, id Metabolism, nall Molecule Biochemistry	Peroxidation of Lipids	2.25E-05	-1.94	6
to-Cell Signaling ad Interaction, atological System velopment and on, Inflammatory Response	Aggregation of blood platelets	5.7E-05	-1.78	7
Carbohydrate oolism, Molecular ansport, Small cule Biochemistry	Uptake of D- glucose	1.19E-04	-1.72	6
ell Signaling, cular Transport,	Quantity of Ca2+	1.52E-04	-1.83	9
min and Mineral Metabolism	Entrance of Ca2+	2.15E-04	-1.97	4
ig Metabolism, ecular Transport, nall Molecule Biochemistry	Concentration of glutathione	3.43E-04	1.97	5

This research was supported in part by the NIGMS and NIMHD part of the National Institutes of Health awards number 2R25GM060507 and P20MD006988.