Disentangling Tourette syndrome and ADHD using electroencephalography and functional connectivity

Presented By:
Simon Morand-Beaulieu, PhD

Co-authors:
Julia Zhong, BS
Michal J. Crowley, PhD
Heidi Grantz, LCSW
James F. Leckman, MD, PhD
Denis Sukhodolsky, PhD

1 McGill University, Montréal, QC, Canada
2 Yale University, New Haven, CT, USA
• Tourette syndrome (TS) and attention deficit hyperactivity disorder (ADHD) frequently co-occur.
• Children with TS who also have a diagnosis of ADHD are more likely to have impairments in cognitive function and more psychosocial and behavioral difficulties.
• It remains unclear how the neurobiological underpinnings of TS and ADHD may be similar or different.

• Different models (Rothenberger & Heinrich, 2022, Biomedicines):
 • Additive effects?
 • Interactive effects?
 • Different phenotype?
• One way of tackling this question is through the study of functional connectivity.
 • Functional connectivity relates to how different brain regions are co-activated
 • This may inform on neural communication may differ across different disorders or conditions.
• Previous work suggest mostly additive effects of TS and ADHD (Jurgiel et al., 2022, Biol Psychiatry CNNI)
OBJECTIVES

• Assess the separate and joint impacts of TS and ADHD on functional brain connectivity
 • Across several frequency bands
PARTICIPANTS

• 137 children
 • TS: 51
 • ADHD: 24
 • TS+ADHD: 29
 • Typically developing controls: 33
• Aged between 7 and 16 years old (mean = 11.1; SD = 1.9)
• High-density electroencephalography (hdEEG) recording during a 7-minute resting-state session.
• EEG preprocessing (filtering, artifact removal, interpolation of bad channels, segmentation in 2-second epochs, re-referencing)
Brain sources were reconstructed from sensor-level EEG data using weighted minimum norm estimation (wMNE) in Brainstorm software.

Source activity projected onto the Desikan-Killiany atlas (68 cortical regions)

Connectivity between these regions was computed with the phase locking value (PLV) in 5 frequency bands

- Delta (1-4 Hz)
- Theta (4-8Hz)
- Alpha (8-13 Hz)
- Beta (13-30 Hz)
- Gamma (30-50 Hz)
• Network-based statistics (NBS)
 • Allow the identification of functional connectivity subnetworks that differ between groups or that are associated with continuous measures.
 • While controlling for multiple comparisons (t-test performed for each connection) using permutation testing.
 • All analyses conducted with 2 (TS: present/not present) by 2 (ADHD: present/not present)
RESULTS

- ADHD main effect (delta: $p = 0.042$, theta: $p = 0.018$, alpha, $p = 0.029$)
RESULTS

- No significant ADHD*TS interaction
These results suggest that TS and ADHD are associated with different patterns of decreased connectivity in resting-state networks.

• Additive but not interactive effects.

• It is possible that more complex cognitive demands may result in interactive effects.
• Thanks to:
 • All children who participated
 • Members of the Sukhodolsky lab
 • Funding organizations
 • NIMH
 • K01MH079130 (Sukhodolsky)
 • R03MH094583 (Sukhodolsky)
 • CIHR
 • MFE164627 (Morand-Beaulieu)
 • Tourette Association of America and American Brain Foundation, in collaboration with the American Academy of Neurology
 • Clinical Research Training Scholarship (Morand-Beaulieu)
 • Any questions?
 • simon.morand-beaulieu@mcgill.ca
 • www.simonmorandbeaulieu.com